07 October, 2014

Separation of variable

Separation of variable

Two dimensional Laplace’s equation in Cartesian Co-ordinates.
 Let us consider a wave function ψ . Where ψ = ψ ( x , y )
Then the Laplace’s equation can be written as
s 2 ψ = 0
Or in other words we can write as
( ∂ 2 ψ / ∂ x 2 ) + ( ∂ 2 ψ / ∂ y 2 ) = 0  _ _ _ _ _ _ _  ( 1 )

 As ψ = ψ ( x , y )
Therefore
Ψ( x , y ) = X ( x ) Y ( y )
The equation ( 1 ) can be written as
[ ( ∂ 2 / ∂ x 2 ) ( X Y ) ] + [ ( ∂ 2 / ∂ y 2 ) ( X Y ) ] = 0
Y (∂ 2 X / ∂ x 2 ) + X (∂ 2 Y / ∂ y 2 ) = 0
( 1 / X ) ( ∂ 2 X / ∂ x 2 ) + ( 1 / Y ) ( ∂ 2 Y / ∂ y 2 ) = 0
( 1 / X ) ( ∂ 2 X / ∂ x 2 )  = - ( 1 / Y ) ( ∂ 2 Y / ∂ y 2 )
 L. H. S. is depends only on the variable ‘ x ’ and R. H. S. is depends only on variable ‘ y ’. This is true only when  
( 1 / X ) ( ∂ 2 X / ∂ x 2 )  = - ( 1 / Y ) ( ∂ 2 Y / ∂ y 2 ) = λ
Therefore
(∂ 2 X / ∂ x 2 ) = λ X
&
- (∂ 2 Y / ∂ y 2 ) = λ Y
This can be written as
( ∂ 2 X / ∂ x 2 ) - λ X = 0 _ _ _ _  ( 2 )
&
( ∂ 2 Y / ∂ y 2 ) + λ Y = 0 _ _ _ _  ( 3 )
These equations can be solved by ordinary differential equations
 Let us consider equation no (2)
(∂ 2 X / ∂ x 2 ) - λ X = 0
[ ( ∂ 2 / ∂ x 2 ) – λ ] X = 0     
D 2 – λ = 0
Where D 2 =  [ ( ∂ 2 / ∂ x 2  )
D = ± ( λ ) 1/2
Hence the most general form of above equation can be written as
X = C e ( λ ) ½ x + D e - ( λ ) ½ x _ _ _ _ ( 4 )
Let us consider equation no ( 3 )
( ∂ 2 Y / ∂ y 2 ) + λ Y = 0
[(∂ 2 / ∂ y 2 ) + λ ] Y = 0
D 2 + λ = 0
Where D 2 = [ ( ∂ 2 / ∂ y 2 ) ]
D2 =  - λ
D = ± i ( λ ) ½
The solution of above equation can be given as
Y = A cos ( λ ) ½ y + B sin ( λ ) ½ y _ _ _ _ ( 5 )

Thus the general solution of Laplace’s equation can be written as follows
Ψ ( x , y ) = X ( x ) . Y ( y )   
Where X ( x ) is given by equation ( 4 ) and Y ( y ) is given by equation ( 5 )
Ψ ( x , y ) = {[ C e ( λ ) ½ x + D e - ( λ ) ½ x ] [A cos ( λ ) ½ y + B sin ( λ ) ½ y ]}

No comments:

Post a Comment