If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of . . . . . . . . . .
( a ) 2 ( b ) 4 ( c ) 8 ( d ) 16
Definition
BLACK BODY RADIATION |
According to Stefan the power radiated from the blackbody can be determine by the formula
P = σ A T4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 )
Where
P = Power radiated from the black body in W ( J / s )
σ = Stefan's Constant 5.67 x 10 - 8 W m - 2 K - 4 .
A = Surface area of black body ( m ² )
T = Temperature of body ( in Kelvin Scale [ K ] )
In other words we can say that the power radiated by the body is varies linearly with the forth power of its absolute temperature ( T 4 ) . Therefore the total energy increases so much for a relatively small increase in temperature.
Stefan's Law ( P = σ A T4 ) |
Problem:
If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of . . . . . . . . . .
Solution :
Let us consider that the P1 be the power radiated from the black body in W ( J / s ) at initial temperature T1 ( K ). ‘ A ’ be the Surface area of black body and P2 be the power radiated from the black body in W ( J / s ) at final temperature T2 ( K ) .
At initial temperature T1 the Stefan’s law can be written as
P1 = σ A T14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 )
Similarly at final temperature T2 the Stefan’s law can be written as
P2 = σ A T24 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 )
Taking ratio of eqn ( 2 ) and ( 3 ) we get
( P 1 / P 2 ) = [ ( σ A T14 ) / ( σ A T24 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 4 )
But
2 T1 = T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( Given )
Putting this value in equation ( 4 ) we get ,
( P 1 / P 2 ) = { [ σ A T14 ] / [ σ A ( 2 T1)4 ] } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( 5 )
( P 1 / P 2 ) = ( 1 / 16 )
P 2 = 16 P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( Answer )
Therefore we can say that if If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of 16 (Answer : d)
No comments:
Post a Comment