a)
i = sin -
1 ( μ / 2 )
b)
i = 2 cos - 1 ( μ / 2 )
c)
i = cos -
1 ( μ / 2 )
d)
i = 2 sin - 1 ( μ / 2 )
Solution :
Given :
i = 2 r
i . e .
r = i / 2
- - - - - - - - - - - -
- - - - - - - - - - - - ( 1 )
According to Snell’s law of refraction ‘the refractive index
of material is equal the ratio of the sine of incident angle to the sine of
angle of refraction’.
i .e .
μ =
( sin i ) / ( sin r )
- - - - - - - - - - - - - - - - - - - - - - -
( 2 )
From equation ( 1 ) & ( 2 ) ,
μ =
( sin i ) / [ sin ( I / 2 ) ]
Therefore ,
μ =
[sin 2 ( I / 2 ) ] / [sin ( I / 2 ) ]
- - - - - - - - - - - - - - - - - - - - - - -
(3)
we know that ,
sin 2 θ =
2 sin θ
cos θ
Therefore equation ( 3 ) becomes ,
μ =
[ 2 sin ( I / 2 ) cos ( I / 2 ) ] / [ sin ( I / 2 ) ]
μ =
[ 2 cos ( I / 2 ) ]
cos ( I / 2 ) = μ / 2
i / 2 =
cos - 1 ( μ / 2 )
i = 2 cos -
1 ( μ / 2 )
A ray of monochromatic light is incident at angle ‘i’ on the
surface of glass slab. If the angle of refraction ‘r’ is twice the angle of
incidence, the angle of incidence is i =
2 cos - 1 ( μ / 2 )
No comments:
Post a Comment